GEOV 222 Paleoclimatology, 2014

Time: 10:15-12:00 Monday, Aud 2 14:15-16:00 Thursday, Aud 3 (RFB:3)

Books

Ruddiman, W.F. Earth's Climate, past and future
W.H. Freeman, New York (2nd edition)
Thomas M. Cronin, Paleoclimates
Columbia Univ. Press
Additional (useful but not required): Climate and the Oceans
(Princeton Primers in Climate) Geoffrey K. Vallis

Part I: Framework of Climate Science-Background (Ch:1-3*)

Parat II: Tectonic scale climate changes—(Ch: 4-7*)

Part III: Orbital scale climate changes (Ch:10-12*) Discussion of current debates

Part IV: Deglacial and abrupt climate changes (Ch:13-14*) Part V: Holocene/Historical/Future climate changes (Ch: 16-20*)

(* refers to chapters in the Ruddiman book find corresponding chapters by topic in the Cronin book for additional insights)

- Paleoclimatology is a complex and rapidly developing field. There are often a variety of hypetheses argued to explain a given observation so it is most useful for you to begin reading the background information early so that you have a fundamental understanding of the components of the climate system and can begin to think critically about the hypotheses discussed in the class.

- A wide variety of past and current research "case studies" will be covered and discussed to cast light on the operation of the global climate system.

Plan for GEOL 222					
Foreleses av: Ulysses Ninnemann					
Uke	dag	tid	tema		
Uke 35	1	10-12	Framework of climate science and "paleoclimate"		
	2	14-16	Climate system components		
Uke 36	1	10-12	Tertiery cooling		
	2	14-16	Tertiery cooling project		
Uke 37	1	10-12	BLAG and CO2 hypotheses & tectonics		
	2	14-16	More cooling lec	ture and Cooling project	
Uke 38	1	10-12	Orbital theory of ice ages seminar organization		
	2	14-16	Orbital Theory lecture		
Uke 39	1	10-12	Orbital Theory problems		
	2	14-16	Student run seminar on Orbital theory of climate		
Uke 40	1	10-12	Ice cores, CO2, and glacial cycles		
	2	14-16	CO2 continued and (Lab)		
Uke 41	1	10-12	Ice sheets, Clima	ce sheets, Climate, and system response times	
	2	14-16	Student run semi	nar on CO2 and glac. cycles	
Uke 42	1	10-12	The world at the	The world at the Last Glacial Maximum	
	2	14-16	Deglaciation proj	ject (Lab)	
Uke 43	1	10-12	Millennial scale	al scale climate change	
	2	14-16	Millennial scale	climate change & (Lab)	
Uke 44	1	10-12	Ocean circulation	n and abrupt climate change	
	2	14-16	Student run semi	nar on Abrupt climate change	
Uke 45	1	10-12	Holocene climate	e change	
	2	14-16	Holocene climate	e change & (Lab)	
Uke 46	1	10-12	Past 1000 years r	natural vs. anthropogenic influences	
	2	14-16	El Nino and NAC	D (Lab)	
Uke 47	1	10-12	10-12 El Nino and NAO		
	2	14-16	Future projection	s Student presentations	
Uke 48		TBD	Review and summary		

G222 Grading and Homework

60% for the final exam

40% for coursework

- <u>20% for Homework/Labs</u> (due 8 days after you receive them—i.e. the following Friday). **Everyone** must **hand in their own** although you can work together on the problems.
- <u>20% for seminar work</u>, we will have 4 seminars discussing scientific papers. Each seminar is 5%. The papers will be presented by students (in groups of 2-4) but everyone must read the paperrs. You must read the paper, attend the seminar, and either present or hand in a short summary (you will receive a handout on this) to receive the credit.