
======= Course Format ========

There is no exam and no formal curriculum, other than being able to program a sufficient amount

(approximately 20-25) of tasks on various topics (see below) and get them accepted at various

competition servers (for an example, http://uva.onlinejudge.org/) during the semster. You will also

have to participate on at least 2 out of 3 competitions arranged during the semester. For topics that

we expect to cover, see below. The programming will be done in Java or C++, your choice.

======= Optional textbooks ========

Programming Challenges, by Steven S. Skiena and Miguel A. Revilla

[Optional means that it is not necessary to have the book; we will loosely refer to the topics there

and use some problems, so you simply might find it useful.]

Any algorithms textbook, for an example:

Algorithm Design (Kleinberg and Tardos)

Introduction to Algorithms (Cormen Leierson Rivest and Stein)

Algorithms (Papadimitriou)

======= Expected topics covered ========

These are the topics covered Spring 2013. This year I expect to do a ligher / easier variant of the

course, covering a proper subset of the subjects below. Exactly which will be thrown out is yet to be

decided.

Basic stuff:

 (1) Introduction to programming techniques during contests.

 (2) Reminder of basic graph algorithms: Graph Representation, DFS, BFS

 (3) Find&Union

 (4) Tricky linear-time algorithms using queues and stacks

 (5) Reminder of qsort, mergesort, binary search; binary search on the expected result.

Data structures:

 (1) Static binary trees; point-interval, interval-point, maybe interval-interval queries.

 (2) Reminder of heap and Dijkstra algorithm; all-to-all shortest paths

 (3) Usage of map and set from STL

Dynamic programming:

 (1) The principle; how to recognize a problem solvable by DP.

 (2) A lot of examples: DP on intervals, DP on trees, etc.

Exponential time algorithms:

 (1) Strategies for implementing brute-force; branching.

 (2) DP on subsets.

 (3) Meet-in-the-middle technique.

Greedy algorithms:

 (1) The principle; how to recognize that a greedy approach works.

 (2) Formal proofs that greedy is correct.

Basic number theory and combinatorics:

 (1) Reminder of binomial coefficients, computing binomial coefficients quickly.

 (2) Strategies for counting various objects; counting using recurrences.

 (3) Generating primes, implementation of factorization.

 (4) Field F_p - main properties.

 (5) Extended Euclid's algorithm.

Equations and matrices:

 (1) Gauss elimination, in an abstract field.

 (2) Fast matrix power computation.

 (3) Solving recurrence using matrix multiplication.

 (4) Applications in graphs: counting triangles, counting C_4-s

Matchings and 2-SAT:

 (1) Maximum matching in a bipartite graph, classical algorithm (not Hopcroft-Karp)

 (2) Linear-time algorithm for 2-SAT

 (3) Examples of applications

Flows:

 (1) Max-flow algorithm (implementation of Edmonds-Karp)

 (2) Max-flow-min-cost (Maybe, probably not)

 (3) Examples of applications

Computational geometry:

 (1) Storing data, basic geometrical operations: scalar and vector product, projections, counting

distances, intersecting two lines, intersecting two intervals, intersecting circles

 (2) Point-in-a-polygon, point-in-a-convex-polygon (maybe)

 (3) Tricks: (x,y) -> (x+y,x-y) trick, computing area of a polygon

 (4) Horizontal sweeping algorithms using static binary trees

 (5) Convex hull, intersection of semiplanes, other examples of radial sweeping

 (6) Divide-and-conquer: closest pair

String algorithms:

 (1) KMP, other examples of using the P-table

 (2) Manacher algorithm

 (3) Trie trees

