INF 247, spring 2014

Igor Semaev

December 5, 2013

1 Cryptanalysis of historical ciphers.

1. General definition of a cryptographic system. Symmetric-key and publickey encryption, classes of cryptanalytic attacks.
2. Substitution cipher, cryptanalysis, unicity distance of a simple substitution cipher.
3. Homophonic cipher, cryptanalysis.
4. Simple Vigenère cipher, cryptanalysis, Kasiski test. Auto-correlation method.
5. Index of coincidence.
6. Transposition cipher, cryptanalysis.
7. Running-key cipher.
8. Hagelin cipher, idea of the cryptanalysis.
9. G-Schreiber, known plain-text attack.

2 Stream ciphers.

1. Cryptanalysis at depth.
2. Synchronous and self-synchronizing stream ciphers.
3. Linear feedback shift registers, characteristic polynomial and minimal polynomial of a matrix. Period of an irreducible polynomial.
4. Checking irreducibility of a polynomial modulo 2 .
5. Constructing primitive polynomials modulo 2 .
6. Linear complexity of binary sequences, linear complexity of the XOR of two sequences.
7. Linear complexity profile of a sequence, properties.
8. Berlekamp-Massey algorithm, complexity.
9. Boolean functions, algebraic normal form(ANF). Algorithm for computing the ANF, complexity.
10. Time-memory trade off for a filter generator.
11. Solving nonlinear algebraic equation via linearization and extended linearization, algebraic attacks for stream ciphers.
12. Constructing annihilators for Boolean functions. Annihilator attack.
13. Berlekamp-Massey attack, complexity.
14. Algorithm for computing Walsh-Hadamard coefficients. Finding the best affine approximation for Boolean functions.
15. Affine approximation attack, complexity.
16. Bernoulli trials, de Moivre-Laplace Theorem. Chernoff bounds. Probability of missing the solution in affine approximation attack.
17. Boolean bent-functions, criterion and examples.
18. Fast correlation attack, complexity. Formula for computing new correlation probabilities.
19. Combining LFSRs, the minimal period of the output sequence. Linear complexity.
20. Correlation attack against a combiner, complexity. Probability of errors, necessary amount of the key-stream.
21. Correlation immune Boolean functions. Bound on their algebraic degree.
22. Piling-up lemma. The best affine approximation for the XOR of Boolean functions in independent variables.
23. Nonlinear Feedback Shift Registers. Generating de Bruijn sequences. Constructing full period NFSR.
24. Alternating step generator. Shrinking generator. Summation generator.
25. 2-adic expansion of rational numbers. Feedback with Carry Shift Registers.
26. Lattices of dimension 2. Gauss-Lagrange algorithm. Reconstruction of a rational number from its partial 2 -adic expansion.
27. Modern stream ciphers: RC4, Trivium, Grain.

3 Block ciphers.

1. Modern block ciphers, round function and key schedule. Feistel ciphers and Substitution Permutation Networks.
2. Meet in the Middle attack. Time and memory complexity.
3. Linear approximations of S-boxes. Computing the most biased linear approximations with Walsh-Hadamard transform.
4. Linear Cryptanalysis for round block ciphers. Necessary amount of plain-text/cipher-text blocks.
5. Linear Cryptanalysis of DES.

4 Comments

The course mostly follows the lecture notes to be distributed before it starts. Weekly exercises will be distributed separately upon some necessary theory is studied. There should be three mandatory exercises, the deadline of handing them in is absolute. The students can get up to 30% of the final grade with mandatory exercises: up to 10% for each, the rest 70% comes from the written exam.

