In 2014 the quantum mechanics course will be based on a book:

Mandl, Franz, Quantum Mechanics (Manchester Physics Series)

Curriculum:

Chapers 1.1-1.4, 2.1,2.3,2.5,2.6,2.7, 3.1-3.3, 4.1-4.4, 5.1-5.8, 6.1,6.3, 7.1-7.4, 8.1-8.3, 9.1-9.4, 10.1-10.2,11.1-11.3, 12.1-12.6

Curriculum & main themes:

Chap 0.

Setting quantum mechanics in a context:

Classical probability distributions.

Schroedinger equation vs Dirac equation vs Klein Gordon eqution.

Recent Nobel Prizes in QM and what they were for.

Chap. 1

Basic principles, the state of the system. Operators & Functions and their properties The Schroedigner equation

Chap. 2 simple example

One dimensional square well, angular momentum, central potentials, momentum eigenstates, harmonic oscillator.

Chap, 3

Compatible observables, constants of motions, the uncertainty principle.

Chap. 4 symmetries and identical particles.

Chap. 5 angular momentum

Dirac notation, spin, spin and angular momentum addition, eigenvalues.

Chap. 6.

Applications of angular momentum.

Chapt 12.

Bra-Ket formalism & operators, vectors & matrix representation.

Harmonic Oscillator - II

Chapt 7.

Timé independent perturbation theory in degenerate and non-degenerate case. examples.

Chapt 8 The variational method.

Chapt 9
Time dependent perturbational theory.

Chapt 10. Scattering, cross-section, potential scattering.

Chapt 11. Scattering in time dependent approach, Born approximation.