PHYS264 Environmental Optics and Transport and Scattering of light and particles

1. Quantum Scattering and transport Topics

Why do we combine all the three topics?

Fourier Methods - a good reason

Quantum and Classical mechanics

The concept of a beam of particles. Transport or scattering.

Bessel functions.

Travelling waves; (Standing waves)

Plane waves and spherical Bessel functions.

Concept of Cross Section; Mean free path; Scatterer density

Mean Free Path, Density of scattering agents; Beer's law

Intensity / probability density.

Cross Section and Differential Cross Section.

Classical Collisions - Scattering from a hard sphere (classical)

Scattering theory, Green's Function

Huygens Principle and Green's Function

Green's Function and Method of variation of constants

Born Approximation

Partial waves - mathematical background. Spherical separation of Variables, Spherical Harmonics

Inelastic Scattering - Objects with structure

Cross Section - Objects with structure;

Reactions; Inelastic Scattering.

Example: Critical Mass for atomic bomb - neutron reactions

How to measure Cross Sections? Thin Target and Thick target

Elastic Scattering on objects with structure (electrons on atoms)

Inelastic Scattering (objects with structure) (electrons on atoms)

2. Environmental Optics Topics

Basic Properties of Radiation, Atmospheres, and Oceans Radiative Interaction with Planetary Media Feedback Processes Radiative Equilibrium and the Thermal Structure of Atmospheres Climate Change: Radiative Forcing and Feedbacks Climate Response to a Change in the Solar Constant Ocean Spectral Reflectance and Opacity Basic State Variables – Geometrical Optics Basic State Variables – Radiative Flux or Irradiance Theorems on Intensity - The Extinction Law, the Beer-Lambert law The Differential Equation of Radiative Transfer I **Basic Scattering Processes** Lorentz Theory for Radiation-Matter Interactions Scattering in Random Media Absorption by Solid, Aqueous, and Gaseous Media Absorption on Surfaces, Aerosols, and within Aqueous Media Molecular Absorption in Gases Thermal Emission and Radiation Laws - Planck's Spectral Distribution Law **Radiative Excitation Processes in Molecules** Microscopic Radiative Transfer Equation Absorption in Molecular Lines and Bands Molecular Vibration and Rotation - Line Strengths Absorption Processes in the UV/Visible parts of spectra Thermal Emission from a Surface - Absorption by a Surface Kirchhoff's Law: Volume Absorption and Emission Differential Equation of Radiative Transfer II

For the students who register for the course the following additional materials are available:

https://miside.uib.no/dotlrn/classes/det-matematisk-naturvitenskapelige-fakultet/phys264/phys264-2014v//file-storage/index?folder_id=115928536